Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model

نویسندگان

  • Bo-Wen Shen
  • B.-W. Shen
چکیده

In this study, we construct a seven-dimensional Lorenz Model (7DLM) to discuss the impact of an extended nonlinear feedback loop on solutions’ stability and illustrate the hierarchical scale dependence of chaotic solutions. Compared to the 5DLM, the 7DLM includes two additional high wavenumber modes that are selected based on an analysis of the nonlinear temperature advection term, a Jacobian term (J(ψ,θ)), where, ψ and θ 5 represent the streamfunction and temperature perturbations, respectively. Fourier modes that represent temperature in the 7DLM can be categorized into three major scales as the primary (the largest scale), secondary, and tertiary (the smallest scale) modes. Further extension of the nonlinear feedback loop within the 7DLM can provide negative nonlinear feedback to stabilize solutions, thus leading to a much larger critical value for the Rayleigh 10 parameter (rc ∼ 116.9) for the onset of chaos, as compared to an rc of 42.9 for the 5DLM as well as an rc of 24.74 for the 3DLM. The rc is determined by an analysis of ensemble Lyapunov exponents (eLEs) with Prandtl number (σ) of 10. To examine the dependence of rc on the value of the Prandtl number, a linear stability analysis is performed near the nontrivial critical point using a wide range of Rayleigh parameter (40≤ r ≤ 195) and Prandtl 15 number (5≤ σ ≤ 25). Then an eLE analysis is conducted using selected values of the Prandtl number. The linear stability analysis is done by solving for the analytical solutions of the critical points, by linearizing the 7DLM with respect to the analytical solutions, and by calculating the eigenvalues of the linearized system. Within the range of (5≤ σ ≤ 25), the 7DLM requires a larger rc for the onset of chaos than the 5DLM. 20 In addition to the negative nonlinear feedback illustrated and emulated by the quasiequilibrium state solutions for high wavenumber modes, the 7DLM reveals the hierarchical scale dependence of chaotic solutions. For chaotic solutions with r=120, the Pearson correlation coefficients (PCCs) between the primary and secondary modes (i.e., Z and Z1) and between the secondary and tertiary modes (i.e., Z1 and Z2) are 0.988 and 0.998, respectively. 25 Here, Z, Z1, and Z2 represent the time-varying amplitudes of the primary, secondary, and tertiary modes, respectively. High PCCs indicate a strong linear relationship among the modes at various scales and a hierarchy of scale dependence. Future work will be undertaken to examine how higher dimensional LMs may produce a larger critical value for the Rayleigh parameter for the onset of chaos and reveal stronger hierarchical scale dependence. 30

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive comment on “Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model” by Bo-Wen Shen

This is a very interesting and well written paper in which the author extends his previous work on the generalized (5D and 6D) Lorenz models to a 7D model. As compared to the original 3D Lorenz model, 4 extra high wavenumber modes are added at three different major scales: the largest (primary), middle (secondary) and smallest (tertiary). The author performs extensive studies of the effects cau...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

Nonlinear Guidance Law with Finite Time Convergence Considering Control Loop Dynamics

In this paper a new nonlinear guidance law with finite time convergence is proposed. The second order integrated guidance and control loop is formulated considering a first order control loop dynamics. By transforming the state equations to the normal form, a finite time stabilizer feedback linearization technique is proposed to guarantee the finite time convergence of the system states to zero...

متن کامل

Presentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates

The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016